You are here » home search results Carlia isostriacantha

Carlia isostriacantha AFONSO-SILVA, SANTOS, OGILVIE & MORITZ, 2017

Can you confirm these amateur observations of Carlia isostriacantha?

Add your own observation of
Carlia isostriacantha »

Find more photos by Google images search: Google images

Higher TaxaScincidae, Eugongylinae (Eugongylini), Scincoidea, Sauria, Squamata (lizards)
Common NamesE: Monsoonal three-keeled rainbow-skink 
SynonymCarlia isostriacantha AFONSO-SILVA, SANTOS, OGILVIE & MORITZ 2017 
DistributionAustralia (Western Australia: Kimberley and adjacent islands; isolated records in the western Gulf region)

Type locality: Prince Regent Nature Reserve, Western Australia, in −15.98972 125.32944  
Reproductionoviparous (not imputed, fide Zimin et al. 2022) 
TypesHolotype: WAM R171420. Specimen collected in 2010 by Paul Doughty (Fig. S7B). Paratypes. WAM R168173 (Boongaree Island), WAM R168675 (Katers Island), WAM R171211 (Darcy Island), WAM R171905 (Wargul Wargul Island), WAM R171906 (Molema Island), WAM R171908 (Sunday Island), WAM R171909 (Balami ridge), WAM R171916 (Lachlan Island), WAM R171921 (Storr Island), WAM R171933 (Balami ridge) (Table S1, Figs. S8B, S8D). 
DiagnosisDiagnosis: As similar to C. triacantha, this species is morphologically distinguished from other Carlia species by having three strong keels in scales, prefrontals more often in contact or very narrowly separated and usually six supraciliaries. As above-mentioned, in contrast with it closest relative, C. triacantha, this species has longer body size, a relatively longer head and tends to have more ear lobules, on average nine very small lobules (Figs. 4 and 5, Table S7). Another possible trait to distinguish between these species is a white line that begins posterior to each hind limb and can extend to midway through the tail (Fig. S9B). This trait is more evident in freshly caught individuals, or photographs of them, than in long preserved specimens and needs to be further tested through more observations on genetically typed individuals. Genetically diagnosed from C. triacantha, by three ND4 mtDNA sites (Table 2) and geographically by occurring in the Kimberley, although geographic diagnoses in Northern Territory requires further work.

Comparisons. This species can be separated from most Australian Carlia species by an upper preocular reduced and well separated from posterior margin of second loreal scale (Hoskin & Couper, 2012); a distinct interparietal, with usually six supraciliaries, prefrontals usually in contact or narrowly separated; 28-36 rows of mid-body scales, that are dorsally 6-sided triscupid, each usually with an angular free edge and strongly keeled; often one larger anterior lobule with many small lobules in a round ear-opening that is smaller than palpebral disc, while the palpebral disc occupies much more than half of lower eyelid (Cogger, 2014). Specifically with potentially sympatric species, C. johnstonei, C. amax, C. rufilatus, C. gracilis and C. munda, this species can be identified by the presence of three strong keels in scales, prefrontals usually in contact, six supraciliaries and absence of white lateral line anterior to the forelimbs. To distinguish from its sister species, C. triacantha, see Diagnosis above. 
EtymologyIsostriacantha is derived from equal in greek (isos) with triacantha, (three spines, referring to the three keels in scales) due to the difficulty of morphologically distinguishing from its sister species C. triacantha. 
  • Afonso Silva, A. C. 2018. Evolutionary history of sympatric Rainbow skinks from the Australian Monsoonal Tropics. PhD Thesis, University of Lisbon, Portugal
  • Afonso-Silva AC, Santos N, Ogilvie HA, Moritz C. 2017. Validation and description of two new north-western Australian Rainbow skinks with multispecies coalescent methods and morphology. PeerJ 5:e3724 - get paper here
  • Zimin, A., Zimin, S. V., Shine, R., Avila, L., Bauer, A., Böhm, M., Brown, R., Barki, G., de Oliveira Caetano, G. H., Castro Herrera, F., Chapple, D. G., Chirio, L., Colli, G. R., Doan, T. M., Glaw, F., Grismer, L. L., Itescu, Y., Kraus, F., LeBreton 2022. A global analysis of viviparity in squamates highlights its prevalence in cold climates. Global Ecology and Biogeography, 00, 1–16 - get paper here
External links  
Is it interesting? Share with others:

As link to this species use URL address:

without field 'search_param'. Field 'search_param' is used for browsing search result.

Please submit feedback about this entry to the curator